Lời giải:
a)
\(\sqrt{8+2\sqrt{15}}+\frac{2}{\sqrt{5}+\sqrt{3}}=\sqrt{3+5+2\sqrt{3}.\sqrt{5}}+\frac{2}{\sqrt{5}+\sqrt{3}}\)
\(=\sqrt{(\sqrt{3}+\sqrt{5})^2}+\frac{2(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}=\sqrt{3}+\sqrt{5}+\frac{2(\sqrt{5}-\sqrt{3})}{5-3}\)
\(=\sqrt{3}+\sqrt{5}+\sqrt{5}-\sqrt{3}=2\sqrt{5}\)
b)
\(\sqrt{7+2\sqrt{6}}+\frac{6-2\sqrt{6}}{\sqrt{6}}-\sqrt{54}=\sqrt{6+1+2\sqrt{6}.\sqrt{1}}+\sqrt{6}-2-3\sqrt{6}\)
\(=\sqrt{(\sqrt{6}+1)^2}+\sqrt{6}-2-3\sqrt{6}\)
\(=\sqrt{6}+1+\sqrt{6}-2-3\sqrt{6}=-(\sqrt{6}+1)\)
\(a.\sqrt{8+2\sqrt{15}}+\frac{2}{\sqrt{5}+\sqrt{3}}\\ =\sqrt{5+2\cdot\sqrt{5}\cdot\sqrt{3}+3}+\frac{2}{\sqrt{5}+\sqrt{3}}\\ =\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+\frac{2}{\sqrt{5}+\sqrt{3}}\\ =\sqrt{5}+\sqrt{3}+\frac{2}{\sqrt{5}+\sqrt{3}}\\ =\frac{\left(\sqrt{5}+\sqrt{3}\right)^2+2}{\sqrt{5}+\sqrt{3}}\\ =\frac{8+2\sqrt{15}+2}{\sqrt{5}+\sqrt{3}}\\ =\frac{10+2\sqrt{15}}{\sqrt{5}+\sqrt{3}}=\frac{2\sqrt{5}\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=2\sqrt{5}\)