\(A=-2\sqrt{3}\left(3-\sqrt{3}\right)+\left(3\sqrt{3}+1\right)^2\)
\(=-6\sqrt{3}+6+\left(3\sqrt{3}\right)^2+2\cdot3\sqrt{3}\cdot1+1^2\)
\(=-6\sqrt{3}+6+27+6\sqrt{3}+1\)
\(=34\)
\(A=-2\sqrt{3}\left(3-\sqrt{3}\right)+\left(3\sqrt{3}+1\right)^2\)
\(=-6\sqrt{3}+6+\left(3\sqrt{3}\right)^2+2\cdot3\sqrt{3}\cdot1+1^2\)
\(=-6\sqrt{3}+6+27+6\sqrt{3}+1\)
\(=34\)
Bài 1: phân tích thành nhân tử A=3x^2-10x+10
B=5a^3+b^3-27+12ab
Bài 2: Tìm GTLN A=-5x^2+21x+2019
Bài 3: cho 1/a+1/b+1/c=2 và a+b+c=abc. Tính A=1/a^3+1/b^3+1/c^3-3/abc
Bài 1: Tính:
\(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)
Bài 2: Rút gọn rồi tính:
a) A=\(\dfrac{a^4-4a^2+3}{a^4-12a^2+27},a=\sqrt{3}-\sqrt{2}\)
b) \(B=\dfrac{1}{\sqrt{h+2\sqrt{h-1}}}+\dfrac{1}{\sqrt{h-2\sqrt{h-1}}},h=3\)
c) \(C=\dfrac{\sqrt{2x+2\sqrt{x^2-4}}}{\sqrt{x^2-4}x+2},x=2\left(\sqrt{3}+1\right)\)
d) \(D=\left(\dfrac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\dfrac{3}{\sqrt{1-a^2}}+1\right),a=\dfrac{\sqrt{3}}{2+\sqrt{3}}\)
Mọi người giúp em với!!!!!!!!!!!!!!
B=\(\left(\dfrac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\dfrac{3}{\sqrt{1-a^2}}+1\right)\)
a) Rút gọn
b) Tìm B khi a=\(\dfrac{\sqrt{3}}{2+\sqrt{3}}\)
c) Tìm a để \(\sqrt{B}>B\)
Tính:
a, A= \(\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}\)+ \(\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}\)
b, B= \(\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}\)+ \(\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
c, C= \(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{25\sqrt{24}+24\sqrt{25}}\)
Giúp em với được không mọi người :
a)Căn 50 - 3 căn 2 + 2 căn 18
b)5 x căn 1/3 - 2 / căn 3 + 1 ( 1 không trong dấu căn 3)
Bài 1 Rút gọn biểu thức:
a) \(\dfrac{\sqrt{3-\sqrt{5}.}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
b) \(\dfrac{4}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}+\dfrac{6}{\sqrt{3}-3}\)
Tính:
a/ \(\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{12}{3-\sqrt{3}}\)
b/ \(\frac{1}{\sqrt{3}-\sqrt{2}}-\frac{2}{\sqrt{7}+\sqrt{5}}-\frac{3}{\sqrt{5}-\sqrt{2}}+\frac{4}{\sqrt{7}+\sqrt{3}}\)
c/ \(\frac{\sqrt{14}-\sqrt{17}}{1-\sqrt{2}}\)
d/ \(\frac{3\sqrt{2}-3}{\sqrt{2}-1}\)
e/ \(\frac{5\sqrt{a}-\sqrt{ab}}{\sqrt{b}-5}\)
\(C=\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\dfrac{1}{x}+\dfrac{1}{y}\right).\dfrac{1}{x+y+2\sqrt{xy}}+\dfrac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}.\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\)
a) Rút gọn
b) Tính C với x=2-\(\sqrt{3}\); y=2+\(\sqrt{3}\)
Rút gọn biểu thức
\(a.\dfrac{\sqrt{5}-2\sqrt{3}}{\sqrt{5}+\sqrt{3}}-\dfrac{2\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\)
\(b.x\sqrt{2x+2}+\left(x+1\right)\sqrt{\dfrac{2}{x+1}}-4\sqrt{\dfrac{x+1}{2}}\)