Ta có: \(\left(1-3\right)A=\left(1-3\right)\left(1+3\right)\left(1+3^2\right)...\left(1+3^{32}\right)\)\(=\left(1-3^2\right)\left(1+3^2\right)...\left(1+3^{32}\right)\)
\(=\left(1-3^{32}\right).\left(1+3^{32}\right)=1-3^{64}\)
\(\left(1-3\right)A=1-3^{64}\Rightarrow A=\dfrac{1-3^{64}}{1-3}=\dfrac{1-3^{64}}{-2}\) Hay \(A=\dfrac{3^{64}-1}{2}\)