\(A=x^2-x+\dfrac{1}{4}-\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Đúng 1
Bình luận (0)
\(A=x^2-x+\dfrac{1}{4}-\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Tìm min \(A=\dfrac{x^3+2x^2+5x+10}{x^2+4x+4}\)
tìm min,max nếu có
a ) A = ( x+ 3 )2 -(2x +3 )2
b ) B = ( 3x -2 ) .( x+1 )- ( 2x -1 ). ( x +2 )
Tìm MIN
\(A=\left(x-3\right)^2+\left(x-10\right)2\)
Tìm min
A = 2x^2 + x +1
Tìm min:
(x+1)(x+2)(x+8)(x+9)
Tìm Min của:
A = \(x^2+2y^2+2xy+2x-4y+2020\)
tìm min
D=(x-1)2 + (x-3)2
tìm min
D=(x-1)2 + (x-3)2
Tìm
Min Q=\(\dfrac{x^2-3x+3}{\left(x-1\right)^2}\forall x\ne1\)