\(D=\left(x-1\right)^2+\left(x-3\right)^2\ge4\)
Vậy Min (D)=4 khi x-1=0 => x=1 hoặc x-3=0 =>x=3.
\(D=\left(x-1\right)^2+\left(x-3\right)^2\ge4\)
Vậy Min (D)=4 khi x-1=0 => x=1 hoặc x-3=0 =>x=3.
tìm min
D=(x-1)2 + (x-3)2
tìm min,max nếu có
a ) A = ( x+ 3 )2 -(2x +3 )2
b ) B = ( 3x -2 ) .( x+1 )- ( 2x -1 ). ( x +2 )
TÌm Min và Max:
A= (x+1)2 + (x+2)2
B= -2x2 - 4
C= -5x2 + 10x - 7
D= x2 + 2y2 + 2xy - y + 1
E= 2x2 - 4x - 2xy + y2 - 1
F= (1-x) . (x+2) . (x+3) . (x+6)
G= x2 + xy
Tìm
Min Q=\(\dfrac{x^2-3x+3}{\left(x-1\right)^2}\forall x\ne1\)
Tìm min
\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|\)
Tìm
Min Q = \(\dfrac{x^2-3x+3}{\left(x-1\right)^2}\) ∀ \(x\ne1\)
Tìm x để \(E=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)min
Tìm min:
(x+1)(x+2)(x+8)(x+9)
Tìm min \(A=\dfrac{x^3+2x^2+5x+10}{x^2+4x+4}\)