\(\dfrac{1}{4}x^2+y^2+4z^2+xy-4yz-2xz+x^2y^2-xy+\dfrac{1}{4}+\dfrac{3}{4}x^2+z^2-2z+1-\dfrac{5}{4}\)
=\(\left(\dfrac{1}{2}x+y-2z\right)^2+\left(xy-\dfrac{1}{2}\right)^2+\dfrac{3}{4}x^2+\left(z-1\right)^2-\dfrac{5}{4}>=-\dfrac{5}{4}\)
=>Min P=\(-\dfrac{5}{4}\)