Lời giải:
\(\lim\limits_{x\to-\infty}\left(3x+\sqrt{9x^2-x}\right)=\lim\limits_{x\to+\infty}\left(\sqrt{9x^2+x}-3x\right)\)
\(=\lim\limits_{x\to+\infty}\frac{9x^2+x-9x^2}{\sqrt{9x^2+x}+3x}=\lim\limits_{x\to+\infty}\frac{x}{\sqrt{9x^2+x}+3x}=\lim\limits_{x\to+\infty}\frac{1}{\sqrt{9+\frac{1}{x}}+3}=\frac{1}{3+3}=\frac{1}{6}\)