Ta có: \(\frac{x-y}{3}=\frac{x+y}{13}\)
=> (x - y).13 = 3.(x + y)
=> 13x - 13y = 3x + 3y
=> 13x - 3x = 3y + 13y
=> 10x = 16y
=> \(x=\frac{16}{10}y=\frac{8}{5}y\)
Thay \(x=\frac{8}{5}y\) vào đề bài ta có: \(\frac{\frac{8}{5}y-y}{3}=\frac{\frac{8}{5}y+y}{13}=\frac{\frac{8}{5}y.y}{200}\)
\(\Rightarrow\frac{\frac{3}{5}y}{3}=\frac{\frac{13}{5}y}{13}=\frac{\frac{8}{5}y^2}{200}\)
\(\Rightarrow\frac{3}{5}y.\frac{1}{3}=\frac{13}{5}y.\frac{1}{13}=\frac{8}{5}y^2.\frac{1}{200}\)
\(\Rightarrow\frac{1}{5}y=\frac{1}{125}.y^2\)
\(\Rightarrow\frac{1}{5}y-\frac{1}{125}.y^2=0\)
\(\Rightarrow\frac{1}{5}y.\left(1-\frac{1}{25}y\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}y=0\\1-\frac{1}{25}y=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}y=0\\\frac{1}{25}y=1\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}y=0\\y=25\end{array}\right.\)
+ Với y = 0 thì \(x=\frac{8}{5}.0=0\)
+ Với y = 25 thì \(x=\frac{8}{5}.25=40\)
Vậy \(\begin{cases}x=0\\y=0\end{cases}\); \(\begin{cases}x=40\\y=25\end{cases}\)
\(\frac{x-y}{3}=\frac{x+y}{13}=\frac{x-y+x+y}{3+13}=\frac{2x}{16}=\frac{x}{8}=\frac{25x}{200}=\frac{xy}{200}\)
Vì 25x = xy nên y = 25
\(\frac{x-y}{3}=\frac{x+y}{13}=\frac{x-y-x-y}{3-13}=\frac{-2y}{-10}=\frac{y}{5}\)
=> \(\frac{y}{5}=\frac{x}{8}\Rightarrow8y=5x\Rightarrow\frac{x}{y}=\frac{8}{5}\)
=> x = 40
Vậy...