Ta có:
\(2\left|x-2007\right|\ge0\Rightarrow2\left|x-2007\right|+3\ge3\Rightarrow VT\ge3\left(1\right)\)
Lại có: \(\left|y-2008\right|\ge0\Rightarrow\left|y-2008\right|+2\ge2\)
\(\Rightarrow\frac{1}{\left|y-2008\right|+2}\le\frac{1}{2}\Rightarrow\frac{6}{\left|y-2008\right|+2}\le3\Rightarrow VP\le3\left(2\right)\)
Từ (1) và (2) suy ra \(VT\ge3\ge VP\)
Xảy ra khi \(VT=VP=3\Leftrightarrow\)\(\left\{\begin{matrix}2\left|x-2007\right|+3=3\\\frac{6}{\left|y-2008\right|+2}=3\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x=2007\\y=2008\end{matrix}\right.\)