Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}=\dfrac{1+3y+1+5y+1+7y}{12+5x+4x}=\dfrac{3+15y}{12+9x}=\dfrac{1+5y}{4+3x}\)
\(\Rightarrow5x=4+3x\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
\(\Rightarrow\dfrac{1+7y}{8}=\dfrac{1+5y}{10}\)
\(\Rightarrow10\left(1+7y\right)=8\left(1+5y\right)\)
\(\Rightarrow10+70y=8+40y\)
\(\Rightarrow2+30y=0\)
\(\Rightarrow30y=-2\)
\(\Rightarrow y=\dfrac{-1}{15}\)
Vậy, x = 2; y = \(\dfrac{-1}{15}\)