\(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot...\cdot\dfrac{15}{32}=2^x\)
\(\Rightarrow\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot15}{4\cdot6\cdot8\cdot10\cdot...\cdot32}=2^x\Rightarrow\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot15}{\left(2\cdot2\right)\left(2\cdot3\right)\left(2\cdot4\right)\cdot...\cdot\left(2.16\right)}=2^x\)
\(\Rightarrow\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot15}{2^{15}\cdot\left(2\cdot3\cdot4\cdot...\cdot16\right)}=2^x\Rightarrow\dfrac{1}{2^{19}}=2^x\)
\(\Rightarrow2^{-19}=2^x\Rightarrow x=-19\)
\(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot...\cdot\dfrac{15}{32}\\ =\dfrac{1\cdot2\cdot3\cdot...\cdot15}{4\cdot6\cdot8\cdot...\cdot32}=\dfrac{1}{2^{14}\cdot2^5}=\dfrac{1}{2^{19}}=2^{-19}=2^x\\ \text{Vì }2\ne0;2\ne\pm1\text{ nên }x=-19\)
<=>1/2.1/2.1/2...1/2=2^x
<=>1/2^15=2^x
<=>2^-15=2^x
<=>x=-15