Phương trình nghiệm nguyên đáng sợ lắm
Ta có: \(x^2-y^2=102\Rightarrow\left(x-y\right)\left(x+y\right)=102=102.1=51.2=\left(-102\right)\left(-1\right)=\left(-51\right)\left(-2\right)\)
Suy ra : \(\left[{}\begin{matrix}x+y=102,x-y=1\\x+y=51,x-y=2\\x+y=-1,x-y=-102\\x+y=-2,x-y=-51\end{matrix}\right.\)
Giải ra thấy x, y đều không phải là số nguyên nên \(x,y\in\varnothing\)
Ps: bước cuối ko giải ra được thì giở toán tổng hiệu lớp 4 đọc lại ok