Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Minh khánh

tìm x, y > 0 sao cho \(\left(x^2+y+\frac{3}{4}\right)\left(y^2+x+\frac{3}{4}\right)=\left(2x+\frac{1}{2}\right)\left(2y+\frac{1}{2}\right)\)

Nguyễn Việt Lâm
7 tháng 6 2020 lúc 13:04

Ta có: \(x^2+\frac{1}{4}\ge x\Rightarrow x^2+y+\frac{3}{4}\ge x+y+\frac{1}{2}\)

Tương tự \(y^2+x+\frac{3}{4}\ge x+y+\frac{1}{2}\)

\(\Rightarrow\left(x^2+y+\frac{3}{4}\right)\left(y^2+x+\frac{3}{4}\right)\ge\left(x+y+\frac{1}{2}\right)^2\) (1)

Mặt khác: \(\left(2x+\frac{1}{2}\right)\left(2y+\frac{1}{2}\right)\le\frac{1}{4}\left(2x+2y+1\right)^2=\left(x+y+\frac{1}{2}\right)^2\) (2)

(1);(2) \(\Rightarrow\left(x^2+y+\frac{3}{4}\right)\left(y^2+x+\frac{3}{4}\right)\ge\left(2x+\frac{1}{2}\right)\left(2y+\frac{1}{2}\right)\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)


Các câu hỏi tương tự
Nguyễn Thị Thu Hằng
Xem chi tiết
poppy Trang
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
Nguyễn Đức Anh
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
Lê Ánh ethuachenyu
Xem chi tiết