\(\Leftrightarrow\left(x-2014+x+2012\right)^3-3\cdot\left(x-2014\right)\left(x+2012\right)\left(x-2014+x+2012\right)=\left(2x-2\right)^3\)
=>3(x-2014)(x+2012)(2x-2)=0
=>\(x\in\left\{2014;-2012;1\right\}\)
\(\Leftrightarrow\left(x-2014+x+2012\right)^3-3\cdot\left(x-2014\right)\left(x+2012\right)\left(x-2014+x+2012\right)=\left(2x-2\right)^3\)
=>3(x-2014)(x+2012)(2x-2)=0
=>\(x\in\left\{2014;-2012;1\right\}\)
Giải phương trình:
\(\dfrac{x+1}{2012}+\dfrac{x+2}{2011}+\dfrac{x+3}{2010}=\dfrac{x-1}{2014}+\dfrac{x-2}{2015}+\dfrac{x-3}{2016}\)
Giải phương trình:
`a, (x-1)/2012+(x-2)/2011+(x-3)/2010+...+(x-2012)/1=2012`
`b,x^4-30x^2+31x-30=0`
`c,(2x-5)^3-(x-2)^3=(x-3)^3`
Cho \(F\left(x\right)=x^3-3x^2+3x+3\)
CM: \(f\left(\dfrac{2014}{2013}\right)< f\left(\dfrac{2013}{2012}\right)\)
giải các phương trình sau:
\(a,\frac{392-x}{32}+\frac{390-x}{34}+\frac{388-x}{36}+\frac{386-x}{38}+\frac{384-x}{40}=-5\)
\(b,\frac{x+1}{2014}+\frac{x+3}{2012}=\frac{x+5}{2010}+\frac{x+6}{2009}\)
x-3/2014+x-2/2015=X-2015/2=x-2014/3 giúp mình giải với
Giải các bất phương trình sau :
a) \(4x-8\ge3\left(3x-1\right)-2x+1\)
b) \(\left(x-3\right)\left(x+2\right)+\left(x+4\right)^2\le2x\left(x+5\right)+4\)
c) \(3x-\dfrac{x+2}{3}\le\dfrac{3\left(x-2\right)}{2}+5-x\)
d) \(x-\dfrac{x+2}{3}\ge3x-1+\dfrac{x}{2}\)
e) \(\dfrac{x\left(x+2\right)}{3}+\dfrac{\left(x-1\right)\left(x+2\right)}{2}\ge\dfrac{5\left(x+1\right)^2}{6}+1\)
f) \(\dfrac{x+5}{2012}+\dfrac{x+6}{2011}+\dfrac{x+7}{2010}>-3\)
Tìm min : E = \(3x^2-4xy+2y^2-3x+2012\)
C = \(\dfrac{x^2-x+2012}{\left(x-2\right)^2}\)
D = \(\dfrac{4x+3}{x^2+1}\)
A = \(x+1+\dfrac{1}{x-1}\) biết rằng x > 1
Giải phương trình: \(\frac{x}{2017}+\frac{x+1}{2016}=\frac{x+2}{2015}+\frac{x+3}{2014}\)
Cho biểu thức A=\(\dfrac{2014}{1-x}+\dfrac{2014}{1+x}+\dfrac{4028}{1+x^2}+\dfrac{8056}{1+x^4}+\dfrac{16112}{1+x^8}+2,1314\)