Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Giải phương trình:

`a, (x-1)/2012+(x-2)/2011+(x-3)/2010+...+(x-2012)/1=2012`

`b,x^4-30x^2+31x-30=0`

`c,(2x-5)^3-(x-2)^3=(x-3)^3`

Nguyễn Lê Phước Thịnh
23 tháng 5 2020 lúc 10:56

a) Ta có: \(\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+...+\frac{x-2012}{1}=2012\)

\(\Leftrightarrow\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+...+\frac{x-2012}{1}-2012=0\)

\(\Leftrightarrow\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+\frac{x-3}{2010}-1+...+\frac{x-2012}{1}-1=0\)

\(\Leftrightarrow\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+...+\frac{x-2013}{1}=0\)

\(\Leftrightarrow\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+1\right)=0\)

\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+1>0\)

nên x-2013=0

hay x=2013

Vậy: Tập nghiệm S={2013}

b) Ta có: \(x^4-30x^2+31x-30=0\)

\(\Leftrightarrow x^4+x-30x^2+30x-30=0\)

\(\Leftrightarrow\left(x^4+x\right)-\left(30x^2-30x+30\right)=0\)

\(\Leftrightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left[x\left(x+1\right)-30\right]=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+6x-5x-30\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left[x\left(x+6\right)-5\left(x+6\right)\right]=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x+6\right)\left(x-5\right)=0\)(1)

Ta có: \(x^2-x+1\)

\(=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

hay \(x^2-x+1>0\forall x\)(2)

Từ (1) và (2) suy ra (x+6)(x-5)=0

\(\Leftrightarrow\left[{}\begin{matrix}x+6=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=5\end{matrix}\right.\)

Vậy: Tập nghiệm S={-6;5}

๖ۣۜDũ๖ۣۜN๖ۣۜG
23 tháng 5 2020 lúc 11:06

a)

PT <=> \(\left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+...+\left(\frac{x-2012}{1}-1\right)=0\)

<=> \(\frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)

<=> \(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{1}\right)=0\)

\(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{1}\ne0\)

<=> x - 2013 = 0

<=> x = 2013

KL: ...

b) PT <=> \(\left(x^4-5x^3\right)+\left(5x^3-25x^2\right)-\left(5x^2-25x\right)+\left(6x-30\right)=0\)

<=> \(x^3\left(x-5\right)+5x^2\left(x-5\right)-5x\left(x-5\right)+6\left(x-5\right)=0\)

<=> \(\left(x-5\right)\left(x^3+5x^2-5x+6\right)=0\)

<=> \(\left(x-5\right)\left[\left(x^3+6x^2\right)-\left(x^2+6x\right)+\left(x+6\right)\right]=0\)

<=> \(\left(x-5\right)\left[x^2\left(x+6\right)-x\left(x+6\right)+\left(x+6\right)\right]=0\)

<=> \(\left(x-5\right)\left(x+6\right)\left(x^2-x+1\right)=0\)

<=> \(\left[{}\begin{matrix}x=5\\x=-6\\x=\varnothing\end{matrix}\right.\)

KL: ...

๖ۣۜDũ๖ۣۜN๖ۣۜG
23 tháng 5 2020 lúc 11:12

b) Đặt 2x - 5 = a; x-2 = b

PT <=> \(a^3-b^3=\left(a-b\right)^3\)

<=> \(a^3-b^3=a^3-3a^2b+3ab^2-b^3\)

<=> \(3a^2b-3ab^2=0\)

<=> \(3ab\left(a-b\right)=0\)

TH1: a = 0

<=> 2x - 5 = 0

<=>\(x=\frac{5}{2}\)

Th2: b = 0

<=> x-2 = 0

<=> x = 2

TH3: a - b = 0

<=> 2x - 5 - (x-2) = 0

<=> x = 3

KL: x \(\in\left\{\frac{5}{2};2;3\right\}\)


Các câu hỏi tương tự
Yim
Xem chi tiết
Akira Ai
Xem chi tiết
Thanh Thanh
Xem chi tiết
Trần Thị Thanh Nam
Xem chi tiết
Quách Trần Gia Lạc
Xem chi tiết
Cry...
Xem chi tiết
mynameisbro
Xem chi tiết
anh hoang
Xem chi tiết
Vũ
Xem chi tiết