Cho biểu thức: P=\(\dfrac{3x-2\sqrt{3x}+1}{\sqrt{3x}-2}\). Tìm x thuộc Z để P thuộc Z
Cho biểu thức: P=\(\dfrac{3x-2\sqrt{3x}+1}{\sqrt{3x}-2}\). Tìm x thuộc Z để P thuộc Z
Cho biểu thức: \(P=\dfrac{3x-2\sqrt{3x}+1}{\sqrt{3x}-2}\). Tìm x thuộc Z để P thuộc Z
\(A=\sqrt{\dfrac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\dfrac{\left(x+2\right)^2}{-8x}}\)
a)Rút gọn
b)Tìm x thuộc Z để A thuộc Z
Tìm x,y,z biết:
a.\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\dfrac{1}{2}\left(x+y+z\right)\)
b.\(\sqrt{x-2}+\sqrt{y+1995}+\sqrt{z-1996}=\dfrac{1}{2}\left(x+y+z\right)\)
Cho P=1-\(\left[\frac{2x-1+\sqrt{x}}{1-\sqrt{x}}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right]\frac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\)
a, Rút gọn P
b, Tìm x thuộc Z để P thuộc Z
1) \(\dfrac{x-3x^2}{2}+\sqrt{2x^4-x^3+7x^2-3x+3}=2\)
2) \(1+\sqrt{\dfrac{x-2}{1-x}}=\dfrac{2x^2-2x+1}{x^2-2x+2}\)
3) \(x+y+z+\dfrac{3}{x-1}+\dfrac{3}{y-1}+\dfrac{3}{z-1}=2\left(\sqrt{x+2}+\sqrt{y+2}+\sqrt{z+2}\right)\) với x ,y ,z > 1
4) \(\sqrt[3]{x+6}+x^2=7-\sqrt{x-1}\)
5) \(x^4-2x^3+x-\sqrt{2\left(x^2-x\right)}=0\)
a.Cho \(-\dfrac{5}{3}\le x\le\dfrac{5}{3};x\ne0\) và \(\sqrt{5+3x}-\sqrt{5-3x}=a\)
Tính giá trị của biểu thức P=\(\dfrac{\sqrt{10+2\sqrt{25-9x^2}}}{x}\) theo a
b.cho x,y,z>0 và x+y+z=12.Tìm GTLN của biểu thức
M=\(\left(\dfrac{2x+y+z-15}{x}\right)+\left(\dfrac{x+2y+z-15}{y}\right)+\left(\dfrac{x+y+2z-24}{z}\right)\)
Cho \(B=\left(1+\dfrac{\sqrt{a}}{a+1}\right):\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)
a, Rút gọn B
b, Tìm a để B<1
c, Cho \(a=19-8\sqrt{3}\). Tính B
d, Tìm a ∈ Z để b ∈ Z
e, Tìm giá trị lớn nhất của M