\(\left(x+\dfrac{1}{2}\right)\left(\dfrac{2}{3}-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\\dfrac{2}{3}-2x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Theo bài ra, ta có : \(\left\{{}\begin{matrix}x+\dfrac{1}{2}=0\\\dfrac{2}{3}-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0-\dfrac{1}{2}\\2x=\dfrac{2}{3}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{2}\\x=\dfrac{2}{3}:2=\dfrac{1}{3}\end{matrix}\right.\)
Ta có: \(\left(x+\dfrac{1}{2}\right)\left(\dfrac{2}{3}-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\\dfrac{2}{3}-2x=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\2x=\dfrac{2}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)