ta xét VT=\(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\left(x+1\right)}=2\left(\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{x\left(x+1\right)}\right)\)
=\(2\left(\frac{7-6}{6\cdot7}+\frac{8-7}{7\cdot8}+...+\frac{\left(x+1\right)-x}{x\left(x+1\right)}\right)=2\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+1}\right)\)
=\(2\left(\frac{1}{6}-\frac{1}{x+1}\right)\)= 2*1/9
=> \(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
<=> \(\frac{1}{x+1}=\frac{1}{18}\)
<=> x+1=18
=> x=17