a, Ta có: \(-2\left|x-3\right|\le0\)
\(\Rightarrow A=9-2\left|x-3\right|\le9\)
Dấu " = " khi \(2\left|x-3\right|=0\Rightarrow x=3\)
Vậy \(MAX_A=9\) khi x = 3
b,Ta có: \(B=\left|x-2\right|+\left|x-8\right|=\left|x-2\right|+\left|8-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(B=\left|x-2\right|+\left|8-x\right|\ge\left|x-2+8-x\right|=\left|6\right|=6\)
Dấu " = " khi \(\left\{{}\begin{matrix}x-2\ge0\\8-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\le8\end{matrix}\right.\)
Vậy \(MIN_B=6\) khi \(2\le x\le8\)
a, \(A=9-2\left|x-3\right|\)
Với mọi giá trị của \(x\in R\) ta có:
\(2\left|x-3\right|\ge0\Rightarrow9-2\left|x-3\right|\le9\)
Hay \(A\le9\) với mọi giá trị của \(x\in R\).
Để \(A=9\) thì \(9-2\left|x-3\right|=9\)
\(\Rightarrow2\left|x-3\right|=0\Rightarrow x=3\)
Vậy..........
b, \(B=\left|x-2\right|+\left|x-8\right|\)
\(B=\left|x-2\right|+\left|8-x\right|\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left|x-2\right|\ge x-2;\left|8-x\right|\ge8-x\)
\(\Rightarrow\left|x-2\right|+\left|8-x\right|\ge x-2+8-x\ge6\)
Hay \(B\ge6\) với mọi giá trị của \(x\in R\).
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left|x-2\right|\ge0\\\left|8-x\right|\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\le8\end{matrix}\right.\)
\(\Rightarrow2\le x\le8\)
Vậy..............
Chúc bạn học tốt!!!
\(A=9-2\left|x-3\right|_{MAX}\)
\(\left|x-3\right|\ge0\Leftrightarrow2\left|x-3\right|\ge0\)
\(9-2\left|x-3\right|_{MAX}\Leftrightarrow2\left|x-3\right|_{min}\)
\(2\left|x-3\right|_{min}=0\)
\(\Leftrightarrow2\left|x-3\right|=0\Leftrightarrow\left|x-3\right|=0\Rightarrow x=3\)
\(MAX_A=9\Leftrightarrow x=3\)