d) \(\left(7-2x\right)^2=49\)
\(\Rightarrow\left(7-2x\right)^2=\left(\pm7\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}7-2x=7\\7-2x=-7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=7-7\\2x=7+7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\2x=14\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)
e) \(\left(9-x\right)^3=216\)
\(\Rightarrow\left(9-x\right)^3=6^3\)
\(\Rightarrow9-x=6\)
\(\Rightarrow x=9-6\)
\(\Rightarrow x=3\)
g) \(6^{x+2}+6^x=1332\)
\(\Rightarrow6^x\cdot\left(6^2+1\right)=1332\)
\(\Rightarrow6^x\cdot37=1332\)
\(\Rightarrow6^x=1332:37\)
\(\Rightarrow6^x=36\)
\(\Rightarrow6^x=6^2\)
\(\Rightarrow x=2\)
\(d,\left(7-2x\right)^2=49\)
\(\Leftrightarrow\left[{}\begin{matrix}7-2x=7\\7-2x=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\2x=14\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)
\(e,\left(9-x\right)^3=216\)
\(\Leftrightarrow\left(9-x\right)^3=6^3\)
\(\Leftrightarrow9-x=6\)
\(\Leftrightarrow x=3\)
\(f,6^{x+2}+6^x=1332\)
\(\Leftrightarrow6^x\left(6^2+1\right)=1332\)
\(\Leftrightarrow6^x\cdot37=1332\)
\(\Leftrightarrow6^x=36\)
\(\Leftrightarrow6^x=6^2\)
\(\Leftrightarrow x=2\)
#Urushi
\(\left(7-2x\right)^2=49=7^2=\left(-7\right)^2\\ \Rightarrow\left[{}\begin{matrix}7-2x=7\\7-2x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=0\\2x=14\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)
---
\(\left(9-x\right)^3=216=6^3\\ \Rightarrow9-x=6\Leftrightarrow x=3\\ Vậy:x=3\)
---
\(6^{x+2}+6^x=1332\\ \Leftrightarrow6^x\left(6^2+1\right)=1332\\ \Leftrightarrow6^x.37=1332\\ \Leftrightarrow6^x=\dfrac{1332}{37}=36=6^2\\ Vậy:x=2\)