`[x+1/2][2-x]>0`
`<=>[x+1/2][x-2]<0`
`<=>` $ \begin{cases}x+\dfrac12>0\\x-2<0\\\end{cases}$
`<=>` $ \begin{cases}x>-\dfrac12\\x<2\\\end{cases}$
`<=>-1/2<x<2`
Nếu cho x nguyên
`=>x in {0;1}`
Ta có: \(\left(x+\dfrac{1}{2}\right)\left(2-x\right)>0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{2}>0\\x-2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-\dfrac{1}{2}\\x< 2\end{matrix}\right.\Leftrightarrow-\dfrac{1}{2}< x< 2\)