\(x^2=x^5\)
\(\Rightarrow x^2-x^5=0\)
\(\Rightarrow x^2.\left(1-x^3\right)=0\)
\(\Rightarrow x^2=0\) hoặc \(1-x^3=0\)
+) \(x^2=0\Rightarrow x=0\)
+) \(1-x^3=0\Rightarrow x^3=1\Rightarrow x=1\)
Vậy \(x\in\left\{0;1\right\}\)
\(x^2=x^5\)
\(x^2.1=x^2.x^3\)
\(\Rightarrow x^3=1\)
\(\Rightarrow x=1\)
\(x^2=x^5\)
=> \(x^2-x^5=0\)
=> \(x^2\left(1-x^3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=1\end{array}\right.\)