\(\left(x-3\right).\left(x^2+3x+9\right)-x.\left(x+2\right).\left(x-2\right)=1\)
\(\Leftrightarrow x^3-3^3-x.\left(x^2-2^2\right)=1\)
\(\Leftrightarrow x^3-27-x^3+4x=1\)
\(\Leftrightarrow-27+4x=1\)
\(\Leftrightarrow4x=28\)
\(\Leftrightarrow x=28:4\)
\(\Leftrightarrow x=7\)
\(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x+2\right)\left(x-2\right)=1\)
\(\Leftrightarrow x^3-27-x\left(x^2-4\right)=1\)
\(\Leftrightarrow x^3-27-x^3+4x=1\)
\(\Leftrightarrow4x=28\)
\(\Leftrightarrow x=7\)
<=>(x-3).(x2 +3x + 9) - x(x+2)(x-2)=1
<=> x3 - 33 -x(x2-4)=1
<=>x3-27-x3+4x=1
<=>4x=27+1
<=>4x=28
<=>x=7
\((x-3).(x^2+3x+9)-x.(x+2).(x-2)=1 \)
\(\Leftrightarrow x^3-3^3-x.\left(x^2-2^2\right)=1\)
\(\Leftrightarrow x^3-3^3-x^3+2^2x=1\)
\(\Leftrightarrow x^3-x^3+4x-3^3=1\)
\(\Leftrightarrow4x-27=1\)
\(\Leftrightarrow4x=1+27\)
\(\Leftrightarrow4x=28\)
\(\Leftrightarrow x=\dfrac{28}{4}\)
\(\Leftrightarrow x=7\)
Vậy \(x=7\)