\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+.........+\left(x+100\right)=5750\\ 100x+5050=5750\\ 100x=700\\ x=7\)
\(\left(x+1\right)+\left(x+2\right)\left(x+3\right)+...+\left(x+100\right)=5750\)
\(\Rightarrow\left(x+x+...+x\right)\left(1+2+3+...+99+100\right)=5750\)
\(\Rightarrow100x+5050=5750\)
\(\Rightarrow100x=5750-5050\)
\(\Rightarrow100x=200\)
\(\Rightarrow x=\frac{200}{100}\)
\(\Rightarrow x=2\)
\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+..+\left(x+100\right)=5750\)
\(\Leftrightarrow\left(x+x+x+..+x\right)+\left(1+2+3+..+100\right)=5750\)
\(\Leftrightarrow100x=5750-\frac{\left(1+100\right)\cdot100}{2}=5750-5050=700\)
\(\Leftrightarrow x=7\)
( x + 1 ) + ( x + 2 ) + ( x + 3 ) + ... + ( x + 100 ) = 5750
( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 100 ) = 5750
100 . x + 5050 = 5750
100 . x = 5750 - 5050
100 . x = 700
=> x = 700 : 100
=> x = 7
Vậy x = 7
\((x+1)+(x+2)+(x+3)+.....+(x+100)=5750\)
\(x+1+x+2+x+3+.....+x+100=5750\)
\(100x+1+2+3+.....+100=5750\)
Từ 1 đến 100 có số các số hạng là: (100-1):1+1=100(số hạng)
\(100x+100.(100+1):2=5750\)
\(100x+5050=5750\)
\(100x=700\)
\(x=7\)
(x+1) + (x+2) + (x+3) + ......+ (x+100) = 5750
⇒(x+x+x+...+x) + (1+2+3+.....+100) = 5750
Có số số thừa số x là:
(100-1) : 1+1 = 100
Tổng của dãy 1+2+3+...+100 là:
(100+1) . 100 :2 = 5050
⇒100x + 5050 = 5750
⇒100x= 5750-5050
⇒100x= 700
⇒x=700:100
⇒x=7