Ta có:
\(\left|x+1\right|\ge0,\left|x+2\right|\ge0,...,\left|x+2014\right|\ge0\)
\(\Rightarrow\)\(\left|x+1\right|+\left|x+2\right|+...+\left|x+2014\right|\ge0\)
\(\Rightarrow2015x\ge0\)
\(\Rightarrow x\ge0\)
Khi đó :\(\left|x+1\right|=x+1,\left|x+2\right|=x+2,...,\left|x+2014\right|=x+2014\)\(\Rightarrow x+1+x+2+...+x+2014=2015x\)
\(\Rightarrow2014x+1+2+...+2014=2015x\)
\(\Rightarrow1+2+..+2014=x\)
\(\Rightarrow x=\dfrac{\left(1+2014\right)2014}{2}=2029105\)