Ta thấy :
\(\left|x+1\right|\ge0\)
\(\left|x+2\right|\ge0\)
............
|x + 2014| \(\ge0\)
Cộng vế với vế ta được :
\(\left|x+1\right|+\left|x+2\right|+....+\left|x+2014\right|\ge0\)
Mà \(\left|x+1\right|+\left|x+2\right|+....+\left|x+2014\right|=2015x\Rightarrow2015x\ge0\Rightarrow x\ge0\)\(\Rightarrow x+1+x+2+....+x+2014=2015x\)
\(\Rightarrow2014x+\frac{2014.2015}{2}=2015x\)
\(\Rightarrow2014x+2029105=2015x\)
\(\Rightarrow2015x-2014x=2029105\)
\(\Rightarrow x=2029105\)