Giải các phương trình sau:
a) \(\sqrt{1-x^2}=x-1\)
b) \(\sqrt{x^2+4x+4}=x-2\)
c) \(\sqrt{\left(2x+4\right)\left(x-1\right)}=x+1\)
d) \(\sqrt{2x^2+4x-1}=x-2\)
Tìm x
a)\(\sqrt{x-1}=2\left(x\ge1\right)\)
b)\(\sqrt{3-x}=4\left(x\le3\right)\)
c)\(2.\sqrt{3-2x}=\dfrac{1}{2}\left(x\le\dfrac{3}{2}\right)\)
d)\(4-\sqrt{x-1}=\dfrac{1}{2}\left(x\ge1\right)\)
e)\(\sqrt{x-1}-3=1\)
f)\(\dfrac{1}{2}-2.\sqrt{x+2}=\dfrac{1}{4}\)
Giải các phương trình sau:
a) \(x^3-6x^2+28x-25=2\left(x+1\right)\sqrt{x+2}+\left(2x-1\right)\sqrt{x-1}\)
b) \(x^3-4x^2+31x-15=2\left(x+2\right)\sqrt{3x+1}+x\sqrt{2x-1}\)
c) \(5x^2+4x+4=2\left(x+2\right)\sqrt{x+3}+x\sqrt{3x-2}\)
Cho biểu thức A = \(\left(\dfrac{\sqrt{x}+2}{x-1}-\dfrac{\sqrt{x}-2}{x-2\sqrt{x}+1}\right):\dfrac{4x}{\left(x-1\right)^2}\)
a) Rút gọn A.
b) tính giá trị của A biết \(\left|x-5\right|=4\).
Giải các phương trình:
a) \(\left(3x-1\right)\left(3x+1\right)=x\left(1+8\sqrt{x+1}\right)\)
b) \(5x^2-5x\sqrt{x^2+x+4}+2x+5=0\)
c) \(9x^2+8x+9=9\left(x+1\right)\sqrt{2x^2+1}\)
d) \(5x^2+2x+2=5x\sqrt{x^2+x+1}\)
e) \(5x^2+20x-12=5\left(x-2\right)\sqrt{3x^2+x}\)
Giải các phương trình sau:
a) \(x\sqrt{x-1}+\left(2x+1\right)\sqrt{x+2}+x^3-4x^2+x-6=0\)
b) \(\left(2x+3\right)\sqrt{2x-1}+x\sqrt{x+3}+x^2-5x-3=0\)
c) \(x\sqrt{2x+3}+\left(x+1\right)\sqrt{4x-1}+2\left(x^2-x-1\right)=0\)
a. \(2x^2-8x-3\sqrt{x^2-4x-5}=12\)
b. \(\left(x-3\right)\left(x+2\right)-3\sqrt{x^2-x+1}+9=0\)
c. 12\(-\sqrt{4-3x}=|3x-4|\)
d. \(\sqrt{3x-2}+\sqrt{x-1}=4x-9+2\sqrt{3x^2-5x+2}\)
Giải phương trình:
a) \(x^2-3x-5\sqrt{9x^2+x-2}=\dfrac{3}{4}x+6\)
b) \(\sqrt{\left(x+1\right)\left(2-x\right)}=1+2x-x^2\)
c) \(2x^2+\sqrt{1-x}+2x\sqrt{1-x^2}=1\)
d) \(\left(\sqrt{x^2+1}-x\right)^5+\left(\sqrt{x^2+1}+x\right)^5=123\)
e) \(1+x-2x^2=\sqrt{4x^2-1}-\sqrt{2x+1}\)
\(\sqrt{3x^2+6x+4}+\sqrt{2x^2+4x+11}=\left(1-x\right)\left(x+3\right)\)