Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quách Trần Gia Lạc

Tìm x, biết: \(\dfrac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\dfrac{19}{49}\)

Nguyễn Thị Thu
8 tháng 1 2018 lúc 12:19

Đặt \(\left\{{}\begin{matrix}x-2010=a\\2009-x=b\end{matrix}\right.\)

Theo đề bài ta có:

\(\dfrac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\dfrac{19}{49}\)

\(\Leftrightarrow\dfrac{b^2+ab+a^2}{b^2-ab+a^2}=\dfrac{19}{49}\)

\(\Leftrightarrow19\left(b^2-ab+a^2\right)=49\left(b^2+ab+a^2\right)\)
\(\Leftrightarrow19b^2-19ab+19a^2-49b^2-49ab-49a^2=0\)

\(\Leftrightarrow-30a^2-68ab-30b^2=0\)

\(\Leftrightarrow-2\left(15a^2+34ab+15b^2\right)=0\)

\(\Leftrightarrow15a^2+34ab+15b^2=0\)

\(\Leftrightarrow15a^2+25ab+9ab+15b^2=0\)

\(\Leftrightarrow5a\left(3a+5b\right)+3b\left(3a+5b\right)=0\)

\(\Leftrightarrow\left(3a+5b\right)\left(5a+3b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3a+5b=0\\5a+3b=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3\left(x-2010\right)+5\left(2009-x\right)=0\\5\left(x-2010\right)+3\left(2009-x\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-6030+10045-5x=0\\5x-10050+6027-3x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x+4015=0\\2x-4023=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-2x=-4015\\2x=4023\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-4015}{-2}=2007,5\\x=\dfrac{4023}{2}=2011,5\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=2007,5\\x=2011,5\end{matrix}\right.\)

Ma Sói
28 tháng 12 2017 lúc 11:18

Đặt a=(2009-x)2

b=(x-2010)2

Theo đề bài ta có

\(\dfrac{\text{a^2+ab+b^2}}{a^2-ab+b^2}=\dfrac{19}{49}\)

\(\text{49(a^2+ab+b^2)}=19\left(a^2-ab+b^2\right)\)

\(\text{30a^2+68ab+30b^2=0}\)

\(\text{15a^2+34ab+15b^2=0}\)

\(\text{15a^2+9ab+25ab+15b^2=0}\)

\(\text{3a(5a+3b)+5(3b+5a)=0}\)

\(\text{(5a+3b)(3a+5b)=0}\)

\(\left[{}\begin{matrix}3a+5b=0\\3b+5a=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}3\left(2009-x\right)=5\left(x-2010\right)\\5\left(2009-x\right)=3\left(x-2010\right)\end{matrix}\right.\)

\(-8x=-6030-10045\) hay \(8x=-10050-6027\)

\(x\simeq2009\),375 hay \(x\simeq2009,625\)

caikeo
2 tháng 2 2018 lúc 22:57

Đặt {x−2010=a2009−x=b{x−2010=a2009−x=b

Theo đề bài ta có:

(2009−x)2+(2009−x)(x−2010)+(x−2010)2(2009−x)2−(2009−x)(x−2010)+(x−2010)2=1949(2009−x)2+(2009−x)(x−2010)+(x−2010)2(2009−x)2−(2009−x)(x−2010)+(x−2010)2=1949

⇔b2+ab+a2b2−ab+a2=1949⇔b2+ab+a2b2−ab+a2=1949

⇔19(b2−ab+a2)=49(b2+ab+a2)⇔19(b2−ab+a2)=49(b2+ab+a2)
⇔19b2−19ab+19a2−49b2−49ab−49a2=0⇔19b2−19ab+19a2−49b2−49ab−49a2=0

⇔−30a2−68ab−30b2=0⇔−30a2−68ab−30b2=0

⇔−2(15a2+34ab+15b2)=0⇔−2(15a2+34ab+15b2)=0

⇔15a2+34ab+15b2=0⇔15a2+34ab+15b2=0

⇔15a2+25ab+9ab+15b2=0⇔15a2+25ab+9ab+15b2=0

⇔5a(3a+5b)+3b(3a+5b)=0⇔5a(3a+5b)+3b(3a+5b)=0

⇔(3a+5b)(5a+3b)=0⇔(3a+5b)(5a+3b)=0

⇔[3a+5b=05a+3b=0⇔[3a+5b=05a+3b=0

⇔[3(x−2010)+5(2009−x)=05(x−2010)+3(2009−x)=0⇔[3(x−2010)+5(2009−x)=05(x−2010)+3(2009−x)=0

⇔[3x−6030+10045−5x=05x−10050+6027−3x=0⇔[3x−6030+10045−5x=05x−10050+6027−3x=0

⇔[−2x+4015=02x−4023=0⇔[−2x=−40152x=4023⇔[−2x+4015=02x−4023=0⇔[−2x=−40152x=4023

⇔⎡⎢ ⎢⎣x=−4015−2=2007,5x=40232=2011,5⇔[x=−4015−2=2007,5x=40232=2011,5

Vậy [x=2007,5x=2011,5

caikeo
2 tháng 2 2018 lúc 22:57

Đặt a=(2009-x)2

b=(x-2010)2

Theo đề bài ta có

a^2+ab+b^2a2−ab+b2=1949a^2+ab+b^2a2−ab+b2=1949

49(a^2+ab+b^2)=19(a2−ab+b2)49(a^2+ab+b^2)=19(a2−ab+b2)

30a^2+68ab+30b^2=030a^2+68ab+30b^2=0

15a^2+34ab+15b^2=015a^2+34ab+15b^2=0

15a^2+9ab+25ab+15b^2=015a^2+9ab+25ab+15b^2=0

3a(5a+3b)+5(3b+5a)=03a(5a+3b)+5(3b+5a)=0

(5a+3b)(3a+5b)=0(5a+3b)(3a+5b)=0

[3a+5b=03b+5a=0[3a+5b=03b+5a=0

[3(2009−x)=5(x−2010)5(2009−x)=3(x−2010)[3(2009−x)=5(x−2010)5(2009−x)=3(x−2010)

−8x=−6030−10045−8x=−6030−10045 hay 8x=−10050−60278x=−10050−6027

x≃2009x≃2009,375 hay x≃2009,625

Game Thủ Liên Quân MObil...
6 tháng 2 2018 lúc 20:44

Đặt a=2009−xa=2009−x, b=x−2010b=x−2010 ⇒a+b=−1⇒a+b=−1.

Ta có : 1949=a2+ab+b2a2−ab+b2=(a+b)2−ab(a+b)2−3ab=1−ab1−3ab1949=a2+ab+b2a2−ab+b2=(a+b)2−ab(a+b)2−3ab=1−ab1−3ab ⇒ab=−334⇒ab=−334.

Từ đó tính được aa hoặc bb, suy ra xx.


Các câu hỏi tương tự
Bùi Quang Sang
Xem chi tiết
Akira Ai
Xem chi tiết
Hiền Thương
Xem chi tiết
Nấm Chanel
Xem chi tiết
PUBGer
Xem chi tiết
Lê Vi
Xem chi tiết
The8BitImage
Xem chi tiết
Nguyễn Thị Kim Anh
Xem chi tiết
Quách Trần Gia Lạc
Xem chi tiết