Tính
\(A=sinx.cosx+\frac{sin^2x}{1+cotx}+\frac{cos^2x}{1+tanx}\)
Cho góc nhọn a. Tính giá trị biểu thức \(A=\left(sinx+cosx\right)^2+\left(sinx-cosx\right)^2\)
Chung min:
a,\(cot^2x.tan^2x+2sinx^{ }.cosx=\left(sinx+cosx\right)^2\)
b,\(sin^4x+cos^4x=1-2sin^2x.cos^2x\)
Bài 1: Biết rằng sinα = 0,6. Tính cosα và tgα.
Bài 2: Biết rằng cosα = 0,7. Tính sinα và tgα.
Bài 3: Biết rằng tgα = 0,8. Tính sinα và cosα.
Bài 4: Biết cosx = \(\dfrac{1}{2}\), tính P = 3sin2x + 4cos2x.
B = tan2 x . (cot2x + cos2x + sin2x – 1 ) + 10
B = sin2 230 + + sin2670 – cos600
Tính giá trị biểu thức A biết \(cosx=0,5;A=\dfrac{cosx+2sin^2x}{cos^2x-sinx}\)
Tìm số đo góc nhọn x:
a) \(4\sin x-1=1\)
b) \(2\sqrt{3}-3\tan x=\sqrt{3}\)
c) \(7\sin-3\cos\left(90^o-x\right)=2,5\)
d) \(\left(2\sin-\sqrt{2}\right)\left(4\cos-5\right)=0\)
e) \(\dfrac{1}{\cos^2x}-\tan x=1\)
f) \(\cos^2x-3\sin^2x=0,19\)
cho biểu thức B = ( căn x - 2 phần x-1 - căn x + 2 phần x+2 căn x +1) . (1-x)2 phần 2
a/ tìm điều kiện xác đinh và rút gọn B
b/ chứng tỏ rằng nếu 0<x<1 thì B>0
c/tính giá trị lớn nhất của B