a)\(5x\left(x-3\right)-4x\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow5x^2-15x-4x^2-4x=x^2-4\)
\(\Leftrightarrow x^2-19x-x^2+4=0\)
\(\Leftrightarrow4-19x=0\Leftrightarrow19x=4\Leftrightarrow x=\dfrac{4}{19}\)
b)\(3x\left(x-5\right)+\left(2x+1\right)\left(x-3\right)=5x\left(x-1\right)\)
\(\Leftrightarrow3x^2-15x+2x^2-5x-3=5x^2-5x\)
\(\Leftrightarrow5x^2-20x-3-5x^2+5x=0\)
\(\Leftrightarrow-15x-3=0\)\(\Leftrightarrow-15x=3\Leftrightarrow x=-\dfrac{1}{5}\)
a, \(5x\left(x-3\right)-4x\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow5x^2-15x-4x^2-4x=x^2-4\)
\(\Leftrightarrow x^2-19x=x^2-4\)
\(\Leftrightarrow19x=4\)
\(\Leftrightarrow x=\dfrac{4}{19}\)
Vậy...
b, \(3x\left(x-5\right)+\left(2x+1\right)\left(x-3\right)=5x\left(x-1\right)\)
\(\Leftrightarrow3x^2-15x+2x^2-6x+x-3=5x^2-5x\)
\(\Leftrightarrow5x^2-20x-3=5x^2-5x\)
\(\Leftrightarrow-20x-3=-5x\)
\(\Leftrightarrow-15x=3\)
\(\Leftrightarrow x=\dfrac{-1}{5}\)
Vậy...
a) 5x.(x-3) - 4x.(x+1) = (x-2).(x+2)
5x2 - 15x - 4x2 - 4x = x2 - 4
5x2 -15x -4x2 - 4x - x2 - 4 = 0
-19x + 4 = 0
-19x = -4
x = \(\dfrac{4}{19}\)
b) 3x( x-5) + (2x+1)(x-3) = 5x(x-1)
3x2 - 15x + 2x2 - 6x + x -3 = 5x2 - 5x
3x2 - 15x + 2x2 - 6x + x -3 - 5x2 + 5x = 0
-15x - 3 =0
x = \(-\dfrac{1}{5}\)
a,
\(5x\left(x-3\right)-4x\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)
=> \(5x^2-15x-4x^2-4x=x^2-4\)
=> \(x^2-19x=x^2-4\)
=> \(19x=4\)
=> \(x=\dfrac{4}{19}\)
Vậy \(x=\dfrac{4}{19}\)
b,\(3x\left(x-5\right)+\left(2x+1\right)\left(x+3\right)=5x\left(x-1\right)\)
=> \(3x^2-15x+2x^2+6x+x+3=5x^2-5x\)
=> \(5x^2-8x+3=5x^2-5x\)
=> -8x + 3 = -5x
=> -3x = -3
=> x = 1
Vậy x = 1