\(5^x.125^x=625\)
\(\Leftrightarrow5^x.\left(5^3\right)^x=5^4\)
\(\Leftrightarrow5^x.5^{3.x}=5^4\)
\(\Leftrightarrow5^{x+3x}=5^4\)
\(\Leftrightarrow x+3x=4\)
\(\Leftrightarrow4x=4\)
\(\Leftrightarrow x=1\)
Vậy x=1
5^x . 125^x = 625
<=> (5 . 125)^x = 625
<=> 625^x = 625
<=> x = 625 : 625
<=> x = 1
\(5^x.125^x=625\)
\(\Leftrightarrow\left(5.125\right)^x=625\)
\(\Leftrightarrow625^x=625\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy ..