Bài 4: Giá trị tuyệt đối của một số hữu tỉ. Cộng, trừ, nhân, chia số thập phân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngọc Minh

Tìm x

a) | x| +|x-2| =2

b) |2x-1| +|9-2x|=8

c) |3x+7|+|3x-20|=27

d) |10-x| +|x+34|=40

Nguyễn Thanh Hằng
18 tháng 7 2018 lúc 13:20

a/ Ta có :

\(\left|x-2\right|=\left|2-x\right|\)

\(\Leftrightarrow\left|x\right|+\left|x-2\right|=\left|x\right|+\left|2-x\right|\)

\(\Leftrightarrow\left|x\right|+\left|x-2\right|\ge\left|x+2-x\right|\)

\(\Leftrightarrow\left|x\right|+\left|x-2\right|\ge2\)

Dấu "=" xảy ra khi :

\(x\left(x-2\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x-2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x-2\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x\ge2\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x\le2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow2\le x\le2\Leftrightarrow x=2\)

Vậy \(x=2\)

b/ \(\left|2x-1\right|+\left|9-2x\right|\ge\left|2x-1+9-2x\right|\)

\(\Leftrightarrow\left|2x-1\right|+\left|9-2x\right|\ge8\)

Dấu "=" xảy ra khi :

\(\left(2x-1\right)\left(9-2x\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-1\ge0\\9-2x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1\le0\\9-2x\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\le\dfrac{9}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\x\ge\dfrac{9}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\dfrac{1}{2}\le x\le\dfrac{9}{2}\)

Vậy ....

c/ Ta có : \(\left|3x-20\right|=\left|20-3x\right|\)

\(\Leftrightarrow\left|3x+7\right|+\left|3x-20\right|=\left|3x+7\right|+\left|20-3x\right|\)

\(\Leftrightarrow\left|3x+7\right|+\left|3x-20\right|\ge\left|3x+7+20-3x\right|\)

\(\Leftrightarrow\left|3x+7\right|+\left|3x-20\right|\ge27\)

Dấu "=" xảy ra khi :

\(\left(3x+7\right)\left(20-3x\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x+7\ge0\\20-3x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}3x+7\le0\\20-3x\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-\dfrac{7}{3}\\x\le\dfrac{20}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-\dfrac{7}{3}\\x\ge\dfrac{20}{3}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\dfrac{20}{3}\le x\le-\dfrac{7}{3}\)

Vậy...

d/ \(\left|10-x\right|+\left|x+30\right|\ge\left|10-x+x+30\right|\)

\(\Leftrightarrow\left|10-x\right|+\left|x+30\right|\ge40\)

Dấu "=" xảy ra khi :

\(\left(10-x\right)\left(x+30\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}10-x\ge0\\x+30\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}10-x\le0\\x+30\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}10\ge x\\x\ge-30\end{matrix}\right.\\\left\{{}\begin{matrix}10\le x\\x\le-30\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow10\ge x\ge-30\)

Vậy...


Các câu hỏi tương tự
Nguyễn Phúc Hà
Xem chi tiết
Phudaikl123
Xem chi tiết
0o0^^^Nhi^^^0o0
Xem chi tiết
Niu niu
Xem chi tiết
Nguyễn Thị Phương Hoa
Xem chi tiết
channel Anhthư
Xem chi tiết
linhtngoc
Xem chi tiết
Nguyễn Amy
Xem chi tiết
Nguyễn Thị Phương Hoa
Xem chi tiết