a ) \(\left(x-4\right)^2-\left(x-2\right)\left(x+2\right)=6\)
\(\Leftrightarrow x^2-8x+16-\left(x^2-4\right)=6\)
\(\Leftrightarrow x^2-8x+16-x^2+4=6\)
\(\Leftrightarrow-8x=-14\)
\(\Leftrightarrow x=\frac{7}{4}\)
Vậy \(x=\frac{7}{4}\)
b ) \(\left(x+3\right)^2-\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow x^2+6x+9-\left(x^2-16\right)=0\)
\(\Leftrightarrow x^2+6x+9-x^2+16=0\)
\(\Leftrightarrow6x+25=0\)
\(\Leftrightarrow6x=-25\)
\(\Leftrightarrow x=\frac{-25}{6}\)
Vậy \(x=\frac{-25}{6}\)
c ) \(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(\Leftrightarrow x^2-4x+4-\left(x^2-9\right)=6\)
\(\Leftrightarrow x^2-4x+4-x^2+9=6\)
\(\Leftrightarrow4x=7\)
\(\Leftrightarrow x=\frac{7}{4}\)
Vậy \(x=\frac{7}{4}\).