Tìm tất cả các số tự nhiên n = , biết rằng n chia hết cho 99.
Tìm tất cả các số tự nhiên có 3 chữ số \(\overline{abc}\) sao cho: \(\left\{{}\begin{matrix}abc=n^2-1\\\overline{cba}=\left(n-2\right)^2\end{matrix}\right.\)
Tìm tất cả các cặp số tự nhiên (n;z) thỏa mãn phương trình: \(2^n+12^2=z^2-3^2\)
Tìm số tự nhiên để \(\sqrt{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\) là số nguyên
Bài 1: Tìm số tự nhiên n để \(\left(3n+2\right)⋮\left(n^2+n+1\right)\)
Tìm số tự nhiên n để tổng \(n^2+\left(n+1\right)^2+\left(n+2\right)^2+\left(n+3\right)^2\) chia hết cho 10.
1. Tìm x;y ∈ N* để \(x^4+4y^4\) là số nguyên tố.
2. Cho n ∈ N* CMR: \(n^4+4^n\) là hợp số với mọi n>1.
3. Cho biết p là số nguyên tố thỏa mãn: \(p^3-6\) và \(2p^3+5\) là các số nguyên tố. CMR: \(p^2+10\) cũng là số nguyên tố.
4. Tìm tất cả các số nguyên tố có 3 chữ số sao cho nếu ta thay đổi vị trí bất kì ta vẫn thu được số nguyên tố.
Tìm tất cả các số nguyên dương n và k sao cho: \(\left(n+1\right)^k-1=n!\)
Tìm tất cả các bộ số nguyên dương (x,y,z) thỏa mãn :
\(\left\{{}\begin{matrix}\left(xy+1\right)⋮z\\\left(xz+1\right)⋮y\\\left(yz+1\right)⋮x\end{matrix}\right.\)