Cho các số thực x, y thỏa mãn x + y=2(\(\sqrt{x+3}+\sqrt{y+3}\)). Tìm giá trị nhỏ nhất của biểu thức P=4(\(x^2+y^2\)) +15xy
Tìm tất cả các giá trị của m để phương trình \(x^2-\left(m-1\right)x+\left(m+3\right)=0\) có 2 nghiệm phân biệt x1, x2 thỏa mãn \(x_1^2+x_2^2\) đạt giá trị nhỏ nhất.
cho x,y,z là cách số thực dương. Tìm giá trị nhỏ nhất của biểu thức
\(x^2+y^2+z^2+\frac{49}{x+2y+3z}\)
Tìm tất cả các giá trị thực của tham số m để phương trình (m^2-4)x=3m+6 vô nghiệm
cần gấp
Cho x+y+z=0 và x,y,z khác 0. Rút gọn:
a) A= \(\frac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
b) B= \(\frac{\left(x^2+y^2-z^2\right)\left(y^2+z^2-x^2\right)\left(z^2+x^2-y^2\right)}{16xyz}\)
Câu 1: Cho biết tập hợp tất cả các giá trị của tham số m để pt \(2\left(x^2+\dfrac{1}{x^2}\right)-3\left(x+\dfrac{1}{x}\right)-2m+1\) có nghiệm là S [ -a/b; dương vô cùng] với a,b là phân số tối giản. Tính T = a + b
Câu 2: Đường thẳng (d): \(\dfrac{x}{a}+\dfrac{y}{b}=1\) với a, b # 0 đi qua M (-1;6) và tạo với tia Ox, Oy 1 tam giác có diện tích = 4. Tính S = a + 2b
CÂu 3:
CHo đường tròn C ( I; 8cm) và C'(K;10cm). Để có 4 tiếp tuyến chug của 2 đg tròn thì IK nhận giá trị nào sau đây (giải chi tiết hộ mk )
a) IK = 18 b) IK = 2 c) IK <18 d) Ik>18
1) x\(^3\) + y\(^3\) = 19
2) (x + y)(8 + y) = 2
3) \(\left\{{}\begin{matrix}x+y+\sqrt{xy}=19\\x^2+2y^2+xy=133\end{matrix}\right.\)
4) \(\left\{{}\begin{matrix}\sqrt[4]{y^3-1}+\sqrt{x}=3\\x^2+y^3=82\end{matrix}\right.\)
Caau1 : Có tất cả bao nhiêu giá trị nguyên ko dương của tham số m để pt \(\sqrt{2x+m}=x-1\) có nghiệm duy nhất
Câu 2: Giả sử phương trình 2x2- 4mx - 1 = 0 có 2 nghiệm x1, x2 . Tìm GTNN của biểu thức T = |x1-x2|
cho \(x,y,z\ge0\) chứng minh rằng:
\(\dfrac{x+y}{\left(x-y\right)^2}+\dfrac{z+y}{\left(y-z\right)^2}+\dfrac{x+z}{\left(x-z\right)^2}\ge\dfrac{9}{x+y+z}\)