\(\Leftrightarrow\left(x-\frac{2}{x}\right)^2-4\left(x-\frac{2}{x}\right)+m+3=0\)
Đặt \(x-\frac{2}{x}=t\Rightarrow t^2-4t+m+3=0\) (1)
Pt đã cho có đúng 2 nghiệm lớn hơn 1 khi và chỉ khi (1) có 2 nghiệm \(t>-1\)
\(\Leftrightarrow f\left(t\right)=t^2-4t+3\) cắt \(y=-m\) tại 2 điểm có hoành độ lớn hơn -1
\(\Rightarrow-1< -m\le8\Rightarrow-8\le m< 1\)