\(\frac{9^x}{2}-2m.3^x+6m-\frac{3}{2}=3^x\)
\(\Leftrightarrow9^x-2.3^x-3-4m.3^x+12m=0\)
\(\Leftrightarrow\left(3^x+1\right)\left(3^x-3\right)-4m\left(3^x-3\right)=0\)
\(\Leftrightarrow\left(3^x-3\right)\left(3^x+1-4m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3^x=1\\3^x=4m-1\left(m>\frac{1}{4}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=0\\x_2=\log_3\left(4m-1\right)\end{matrix}\right.\)
\(\Rightarrow\log_3\left(4m-1\right)=4\)
\(\Leftrightarrow4m-1=64\Rightarrow m=\frac{65}{4}\)