Bài 8: Các trường hợp đồng dạng của tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bách Out Trình

Tìm tất cả các cặp số nguyên dương x,y thỏa mãn:

x3+y3-9xy=0

 

๖ۣۜDũ๖ۣۜN๖ۣۜG
6 tháng 2 2022 lúc 0:41

\(x^3+y^3-9xy=0\)

\(\Leftrightarrow\left(x+y\right)^3-3x^2y-3xy^2-9xy=0\)

\(\Leftrightarrow\left(x+y\right)^3+27-3xy\left(x+y+3\right)=27\)

\(\Leftrightarrow\left(x+y+3\right)\left[\left(x+y\right)^2-3\left(x+y\right)+9\right]-3xy\left(x+y+3\right)-27=0\)

\(\Leftrightarrow\left(x+y+3\right)\left(x^2+2xy+y^2-3x-3y+9-3xy\right)-27=0\)

\(\Leftrightarrow\left(x+y+3\right)\left(x^2-xy+y^2-3x-3y+9\right)-27=0\)

\(\Leftrightarrow\left(x+y+3\right)\left(2x^2-2xy+2y^2-6x-6y+18\right)-54=0\)

\(\Leftrightarrow\left(x+y+3\right)\left[\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2\right]=54\)

Do x, y > 0 => x + y + 3 > 3

Mà x, y nguyên dương => \(\left\{{}\begin{matrix}x+y+3\in Z^+\\\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2\in Z^+\end{matrix}\right.\)

Và \(\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2⋮2\)

TH1: \(\left\{{}\begin{matrix}x+y+3=9\\\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=6\\x^2-xy+y^2-3x-3y=-6\end{matrix}\right.\)

\(\Leftrightarrow x^2-x\left(6-x\right)+\left(6-x\right)^2-3x-3\left(6-x\right)=-6\)

\(\Leftrightarrow x^2-6x+8=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\Leftrightarrow y=2\left(tm\right)\\x=2\left(tm\right)\Leftrightarrow y=4\left(tm\right)\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x+y+3=27\\\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=24\\x^2-xy+y^2-3x-3y=-8\end{matrix}\right.\)

\(\Leftrightarrow x^2-x\left(24-x\right)+\left(24-x\right)^2-3x-3\left(24-x\right)=-8\)

\(\Leftrightarrow3x^2-72x+512=0\) (vô nghiệm)

KL: Vậy phương trình có tập nghiệm (x;y) = [(2;4);(4;2)]

 


Các câu hỏi tương tự
Tô Phương Nhung
Xem chi tiết
Nga209
Xem chi tiết
Nguyễn Thế Ánh
Xem chi tiết
Thu Ngân
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Trần Nam Hải
Xem chi tiết
Trường chơi ngu
Xem chi tiết
KYAN Gaming
Xem chi tiết