Bài 2 :
a, Cho các số a,b,c,d là các số nguyên dương đôi 1 khác nhau và thỏa mãn :
\(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\) . Chứng minh \(A=abcd\) là số chính phương
b, Tìm nguyên a để \(a^3-2a^2+7a-7\) chia hết cho \(a^2+3\)
Câu 1. (4 điểm)
Cho biểu thức:
a) Rút gọn biểu thức
b) Tìm giá trị nguyên của để nhận giá trị nguyên
Câu 2. (4 điểm)
a) Chứng minh rằng: với
b) Cho Tìm tất cả các số tự nhiên để là số nguyên tố.
A=\(\dfrac{4x^2+\left(2x+3\right)\left(x+1\right)-9}{9x^2-4}\)
a) Rút gọn A
b) Tìm các số nguyên x để A đạt giá trị nguyên
\((a^3+b^3)/(a^2+2ab+b^2) Tìm a,b nguyên sao cho bt trên là số nguyên\)
\(^{\dfrac{x^2-3x-4}{^{x^2-1}}}\)
a) Tìm điều kiện of x để biểu thức A xác định
b) Rút gọn A
c) Tìm x để A là 1 số nguyên
cho các số dương x và y thỏa mãn \(\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{2}\)
Tìm giá trị nhỏ nhất của biểu thức A=x+y
Bài 1: Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0,\) \(abc=36\)
Hãy tính \(Q=\dfrac{a^2\left(b^2+c^2\right)-b^2c^2}{a^6}.\dfrac{b^2\left(c^2+a^2\right)-c^2a^2}{b^6}.\dfrac{c^2\left(a^2+b^2\right)-a^2b^2}{c^6}\)
Bài 2: Cho đa thức \(f(x)=6x^5-10x^4-5x^3+23x^2-29x+2005\). Hãy tính \(f(a)\) biết \(3a^2-5a=1\)
Bài 3: Tìm tất cả cặp số x,y dương thỏa mãn: \(x^3+y^3-9xy=0\)
Bài 4: Tìm x: \(x^4+2x-25=0\)
Cho biểu thức: P= 3/x+2 - 2/2-x -8/x^2-4
a) Tìm điều kiện của biến x để giá trị của biểu thức P được xác định.
b) Rút gọn biểu thức P.
c) Tìm giá trị nguyên dương của x để giá trị của biểu thức P là một số nguyên dương.