Bài 2 :
a, Cho các số a,b,c,d là các số nguyên dương đôi 1 khác nhau và thỏa mãn :
\(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\) . Chứng minh \(A=abcd\) là số chính phương
b, Tìm nguyên a để \(a^3-2a^2+7a-7\) chia hết cho \(a^2+3\)
cho 2 số a,b thỏa: a2-2ab+1=2(ab-b2)
tinhsP= \(\dfrac{a^5+b^5+2ab}{4a^3-2ab}\)
Cho biểu thức M=x / x+3+2x / x-3-9-3x^2 / 9-x^2
a)Rút gọn bt M
b)Tìm x để M dương,M âm
c)Tìm giá trị của của M khi x thỏa mãn |2x+1|=5
d)Tìm x thuộc Z để M nhận giá trị nguyên
e)Tìm giá trị lớn nhất của N=M .x-3/x^2-2x+3
Câu 1. (4 điểm)
Cho biểu thức:
a) Rút gọn biểu thức
b) Tìm giá trị nguyên của để nhận giá trị nguyên
Câu 2. (4 điểm)
a) Chứng minh rằng: với
b) Cho Tìm tất cả các số tự nhiên để là số nguyên tố.
Cho biểu thức: A = (x/x^2-4-4/2-x+1/x+2):3x+3/x^2+2x
a) Tìm điều kiện xác định của A và rút gọn biểu thức A;
b) Tính giá trị của biểu thức A khi |2x-3|-x+1=0
c) Tìm giá trị nguyên của x để A nhận giá trị nguyên.
Cho \(\dfrac{a^2+b^2-c^2}{2ab}+\dfrac{b^2+c^2-a^2}{2bc}+\dfrac{c^2+a^2-b^2}{2ac}\)=1
CM rằng 1 trong 3 số a,b,c có 1 số bằng tổng 2 số còn lại
A=\(\dfrac{4x^2+\left(2x+3\right)\left(x+1\right)-9}{9x^2-4}\)
a) Rút gọn A
b) Tìm các số nguyên x để A đạt giá trị nguyên
Cho biểu thức 2x-9/x^2-5x+6-x+3/x-2-2x+1/3-x
a)Tìm x để P=-1/2,P<1
b)tính P khi x thỏa mãn x^2 -4=0
c) X thuộc Z để P nhận giá trị nguyên dương