Cho a,b,c đôi một và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) . Rút gọn
N=\(\dfrac{bc}{a^2+2bc}+\dfrac{ac}{b^2+2ac}+\dfrac{ab}{c^2+2ab}\)
M=\(\dfrac{a^2}{a^2+2bc}+\dfrac{b^2}{b^2+2ac}+\dfrac{c^2}{c^2+2ab}\)
Cho \(\dfrac{a^2+b^2-c^2}{2ab}+\dfrac{b^2+c^2-a^2}{2bc}+\dfrac{c^2+a^2-b^2}{2ac}\)=1
CM rằng 1 trong 3 số a,b,c có 1 số bằng tổng 2 số còn lại
\((a^3+b^3)/(a^2+2ab+b^2) Tìm a,b nguyên sao cho bt trên là số nguyên\)
Tìm x,biết
a, x-\(\dfrac{3a+b}{b}\)=\(\dfrac{2a^2-2ab}{b^2-ab}\)
b, x+(a+b)\(^2\)=\(\dfrac{a^4+b^4}{\left(a-b\right)^2}\)
Cho a,b,c đôi một khác nhau thỏa mãn:ab+bc+ca=2011.Tính giá trị của biểu thức
K=\(\dfrac{\left(a^2+2bc-2011\right)\left(b^2+2ca-2011\right)\left(c^2+2ab-2011\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
Tính giá trị của biểu thức A=\(\dfrac{2a-b}{3a-b}\)+\(\dfrac{5b-a}{3a+b}\)-3 biết a2-5ab-6b2=0 và 9a2-b2 ≠0;a,b>0
Cho a,b >0 thảo mãn a2-2ab-3b2=0.Tính giá trị của biểu thức P=\(\dfrac{a^2-b^2}{a^2-ab+b^2}\)
Bài 3 Chứng minh rằng với a, b, c, x, y, z (trong đó xyz 6= 0) thỏa mãn (a2 + b2 + c2)(x2 + y2 + z2) = (ax + by + cz)2
thì a/x =b/y =c/z.
B1: Tính:
\(B=\dfrac{4.\left(x+3\right)^2}{\left(3x+5\right)^2-4x^2}-\dfrac{x^2-25}{9x^2-\left(2x+5\right)^2}-\dfrac{\left(2x+3\right)^2-x^2}{\left(4x+15\right)^2-x^2}\)
B2: Xác định a, b, c:
a, \(\dfrac{10x-4}{x^3-4x}=\dfrac{a}{x}+\dfrac{b}{1-2}+\dfrac{c}{n+2}\) với mọi x khác 0, x khác \(\pm2\)
b, \(\dfrac{1}{x^3-1}=\dfrac{a}{x-1}+\dfrac{bx+c}{x^2+x+1}\)
Help me!!!
Cho 3 số a , b , c khác 0 thỏa mãn : \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}=\dfrac{a}{c}+\dfrac{c}{b}+\dfrac{b}{a}\)
Chứng minh rằng : a=b=c