a) Biểu thức A xác định `<=>x^2-1 ne 0 <=> (x-1)(x+1) ne 0 <=> x ne +-1`
b) `A=(x^2-3x-4)/(x^2 -1) = (x^2+x-4x-4)/(x^2-1) = (x(x+1)-4(x+1))/(x^2-1)`
`= ((x+1)(x-4))/((x+1)(x-1))=(x-4)/(x-1)`
c) `A` là số nguyên `<=> (x-4) vdots\ (x-1)`
`<=>[(x-1)-3] vdots\ (x-1)`
`<=> -3\ vdots\ (x-1)`
`<=> (x-1)\ in\ Ư(-3)`
`<=>(x-1)\ in\ {-3;-1;3;1}`
`<=>x\ in\ {-2;0;4;2}`
Vậy...
a: ĐKXĐ: x<>1; x<>-1
b: \(A=\dfrac{\left(x-4\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-4}{x-1}\)
c: Để A là số nguyên thì x-1-3 chia hết cho x-1
=>\(x-1\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{2;0;4;-2\right\}\)
\(a,ĐK:x^2-1\ne0\)
\(\Rightarrow\left(x-1\right)\left(x+1\right)\ne0\)
\(\Rightarrow\left[{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
Vậy ĐKXĐ của \(x\) là \(x\ne\pm1\)
\(b,\dfrac{x^2-3x-4}{x^2-1}=\dfrac{\left(x-4\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-4}{x-1}\)
\(c,\) Ta có: \(\dfrac{x-4}{x-1}=\dfrac{x-1-3}{x-1}=\dfrac{x-1}{x-1}-\dfrac{3}{x-1}=1-\dfrac{3}{x-1}\)
Để \(A\in Z\) thì \(\dfrac{3}{x-1}\in Z\)
\(\Rightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(x\) | \(2\) (TMĐK) | \(0\) (TMĐK) | \(4\) (TMĐK) | \(-2\) (KTMĐK) |
Vậy \(x\in\left\{2;0;4;-2\right\}\)