ĐKXĐ: \(8-x^2\ge0\Rightarrow x^2\le8\Rightarrow-2\sqrt{2}\le x\le2\sqrt{2}\)
\(\Rightarrow D=\left[-2\sqrt{2};2\sqrt{2}\right]\)
ĐKXĐ: \(8-x^2\ge0\Rightarrow x^2\le8\Rightarrow-2\sqrt{2}\le x\le2\sqrt{2}\)
\(\Rightarrow D=\left[-2\sqrt{2};2\sqrt{2}\right]\)
Bài 1: Tìm tập hợp các giá trị của m để hàm số \(y=\sqrt{\left(m+10\right)x^2-2\left(m-2\right)x+1}\)có tập xác định D= R
Bài 2:Có bao nhiêu giá trị m nguyên để hàm số \(y=1-\sqrt{\left(m+1\right)x^2-2\left(m-1\right)x+2-2m}\)có tập xác định là R?
tìm tập xác định của hàm số y = $\sqrt {\dfrac{ x^2 + x + 2 } { | 2x - 1 | + x -2 } } $
Giải hpt :
\(\left\{{}\begin{matrix}2\sqrt{x+3y+2}-3\sqrt{y}=\sqrt{x+2}\\\sqrt{y-1}-\sqrt{4-x}+8-x^2=0\end{matrix}\right.\)
Các bạn giải giúp mình bài toán này nha:
Tìm giá trị nhỏ nhất của biểu thức sau:
x,, y, z là các số dương.
\(P=\sqrt[3]{4\left(x^3+y^3\right)}+\sqrt[3]{4\left(x^3+z^3\right)}+\sqrt[3]{4\left(z^3+x^3\right)}+2\left(\frac{x}{y^2}+\frac{y}{z^2}+\frac{z}{x^2}\right)\)
Xin chân thành cảm ơn.
giải hệ phương trình sau:
\(4x^2+y-x-9=\sqrt{3x+1}+\sqrt{x^2+5x+y-8}\)
\(x\sqrt{12-y}+\sqrt{y\left(12-x^2\right)}=12\)
tìm nghiệm (x;y) với x là số nguyên dương của pt sau
\(\sqrt{20-8x}+\sqrt{6x^2-y^2}=y\sqrt{7-4x}\)
Tìm x:
a.\(\sqrt{4-\sqrt{4+x}}=x\)
b.\(4\left(\sqrt{x-1}-3\right)x^2+\left(13\sqrt{x+1}-8\right)x-4\sqrt{x-1}-3=0\)
c.\(\sqrt{2x-3}+2\sqrt{x-3}\ge3\sqrt[4]{2x^2+x-6}\)
\(\begin{cases}4x^3-4x^2-7x=\left(3y^2-6y+4\right)\sqrt{3y^2-6y+7}\\\left(x^3-3x^2\right)\left(\sqrt{x^2+\left(y-1\right)^2}+3\right)+8=\left(x^2+y^2-2y\right)^2-7\left(x^2+y^2-2y\right)\end{cases}\)
Tính GTNN của hàm số \(y=\sqrt[3]{x^4+2x+1}-3\sqrt[3]{x^2+1}+1\)