Giải các phương trình sau:
1) \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
2) \(x^2-2x-12+4\sqrt{\left(4-x\right)\left(2+x\right)}=0\)
3) \(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}=2x+\dfrac{1}{2x}-7\)
4) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
5)\(\left(x-7\right)\sqrt{\dfrac{x+3}{x-7}}=x+4\)
6) \(2\sqrt{x-4}+\sqrt{x-1}=\sqrt{2x-3}+\sqrt{4x-16}\)
7) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
Giúp mình với ajk, mink đang cần gấp
1)\(\begin{cases}\sqrt{4x^2+\left(4x-9\right)\left(x-3y\right)}+\sqrt{3xy}=9y\\4\sqrt{\left(x+2\right)\left(3y+2x\right)}=3x+9\end{cases}\) 4)\(\begin{cases}\left(x^2+y\right)\sqrt{x-y+6}=2x^2-x+3y-2\\\sqrt{10x-xy-12}+1=\frac{y-x}{\sqrt{y-4}+\sqrt{6-x}}\end{cases}\)
2)\(\begin{cases}x^2+\left(y-6\right)^2=y+13x+27\\\sqrt{9x^2+\left(2x-3\right)\left(x-y\right)}+4\sqrt{xy}=7y\end{cases}\) 5)\(\begin{cases}\sqrt{4xy+\left(3\sqrt{xy}-7\right)\left(x-y\right)}+2\sqrt{xy}=4y\\\left(2x+1\right)\left[12y-1+9\sqrt{xy}-x^2-x\right]=27\left(x+1\right)\end{cases}\)
3)\(\begin{cases}\sqrt{\left(x+2\right)\left(y+1\right)+\left(x-y+1\right)\sqrt{y^2+1}}+\sqrt{x+2}=y+\sqrt{y+1}+1\\\sqrt{3x+1}-\sqrt{y+1}=2x^2+4x-y-1\end{cases}\)
1.\(\sqrt{\frac{\left(1-x\right)}{x}}=\frac{\left(2x+x^2\right)}{1+x^2}\)
2. 3(2-\(\sqrt{x+2}\))=2x+\(\sqrt{x+6}\)
3. \(\sqrt[3]{x+2}+\sqrt[3]{x+1}=\sqrt[2]{2x^2}+\sqrt[3]{2x^2+1}\)
4. \(\sqrt[3]{x+24}+\sqrt{12-x}=6\)
Toán 10 ạ, giúp em với
Tìm x:
a.\(\sqrt{4-\sqrt{4+x}}=x\)
b.\(4\left(\sqrt{x-1}-3\right)x^2+\left(13\sqrt{x+1}-8\right)x-4\sqrt{x-1}-3=0\)
c.\(\sqrt{2x-3}+2\sqrt{x-3}\ge3\sqrt[4]{2x^2+x-6}\)
Giải phương trình:
a) \(5x^2-10x=4\left(x-1\right)\sqrt{x^2-2x+2}\)
b) \(\sqrt{2x^2+22x+29}-x-2=2\sqrt{2x+3}\)
c) \(x^3-7x^2+9x+12=\left(x-3\right)\left(x-2+5\sqrt{x-3}\right)\left(\sqrt{x-3}-1\right)\)
Giai pt
1,\(\sqrt{x+8-6\sqrt{x-1}}\)=4
2,\(\sqrt{x+6-2\sqrt{x+2}}\)+\(\sqrt{x+11-6\sqrt{x+2}}\)=1
3,\(\sqrt{x-3-2\sqrt{x-4}}\)+\(\sqrt{x-4\sqrt{x-4}}\)=1
4,\(\sqrt{x-2+\sqrt{2x+5}}\)+\(\sqrt{x+2+3\sqrt{2x-5}}\)=\(\dfrac{7}{2}\)
5,\(\sqrt{2x+4+6\sqrt{2x-5}}\)+\(\sqrt{2x-4-2\sqrt{2x-5}}\)=4
6,\(\sqrt{\dfrac{1}{4}x^2+x+1}\)-\(\sqrt{6-2\sqrt{5}}\)=0
7,x+\(\sqrt{x+\dfrac{1}{2}}\)+\(\sqrt{x+\dfrac{1}{4}}\)=2
8,\(\sqrt{\left(x-1\right)+4-4\sqrt{x-1}}+\sqrt{x-1-6\sqrt{x-1+9}}\)=1
9,\(\sqrt{x+2\sqrt{x-1}}\)+\(\sqrt{x-2\sqrt{x-1}}\)=\(\dfrac{x+3}{2}\)
Giải phương trình:
1) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
2) \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
a)\(\sqrt{4x-1}+\sqrt{4x^2-1}=1\)
b)\(x+4\sqrt{x+3}+2\sqrt{3-2x}=11\)
c)\(\sqrt{x}-x=1-\sqrt{2x+1}\)
d)\(\sqrt{x}+\sqrt{4-x}-2=-x\)
e)\(\sqrt{4+x}+x=\sqrt{4+12x}\)
Giai pt:
a, \(x^2+\sqrt[3]{x^4-x^2}=2x+1\)
b, \(x+1+\sqrt{x^2-4x+1}=3\sqrt{x}\)
c, \(\sqrt{2x^2+7x+10}+\sqrt{2x^2+x+4}=3\left(x+1\right)\)
d, \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)
Mong moi nguoi giup do, em can gap !!!