\(\dfrac{1-x}{1+x}< 0 \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}1-x< 0\\1+x>0\end{matrix}\right.\\\left\{{}\begin{matrix}1-x>0\\1+x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x< 1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\left(1;+\infty\right)\\x\in\left(-\infty;-1\right)\end{matrix}\right.\)
Vậy \(x\in\left(-\infty;-1\right)\cup\left(1;+\infty\right)\) thỏa mãn