\(\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{2}{n\left(n+1\right)}=\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{n\left(n+1\right)}\)
\(=\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{n\left(n+1\right)}\)
\(=2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}\right)\)
\(=2.\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)
\(=2.\left(\dfrac{1}{2}-\dfrac{1}{n+1}\right)=\dfrac{2016}{2017}\)
\(\Rightarrow\dfrac{2016}{2017}:2=\dfrac{1}{2}-\dfrac{1}{n+1}\)
\(\dfrac{1008}{2017}=\dfrac{1}{2}-\dfrac{1}{n+1}\)
\(\Rightarrow\dfrac{1}{n+1}=\dfrac{1}{4034}\)
=>n+1=4034
n=4034-1
n=4033