x2+2y2-2xy-2y-2x+5=0
<=>(x2-2xy+y2-2x+2y+1)+(y2-4y+4)=0
<=>(x-y-1)2+(y-2)2=0
Do (x-y-1)2\(\ge\)0
(y-2)2\(\ge\)0
=>Phương trình tương đương \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)
\(x^2+2y^2-2xy-2y-2x+5=0\)
\(\Leftrightarrow\left(x^2-2xy-2x+y^2+2y+1\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(y-2\right)^2=0\)
Dễ thấy: \(\left\{{}\begin{matrix}\left(x-y-1\right)^2\ge0\ge x,y\\\left(y-2\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-y-1\right)^2+\left(y-2\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\left(x-y-1\right)^2=0\\\left(y-2\right)^2=0\forall\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)