ta có
n^5+1=n^2(n^3+1)-n^2+1
để n^5+1 chia hết cho n^3+1
thì số dư =0 ( n^5+1 chia cho n^3+1 được thương là n^2 và số dư là 1-n^2)
hay 1-n^2=0 <=> n=1 hoặc n= -1
ta có
n^5+1=n^2(n^3+1)-n^2+1
để n^5+1 chia hết cho n^3+1
thì số dư =0 ( n^5+1 chia cho n^3+1 được thương là n^2 và số dư là 1-n^2)
hay 1-n^2=0 <=> n=1 hoặc n= -1
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63
chứng minh rằng với mọi số nguyên a thì (a+2)^2-(a-2)^2 chia hết cho 4
b) tìm số nguyên n để giá trị của biểu thức A chia hết cho giá trị của biểu thưc B
A=n^3+2n^2-3n+2; B =n-1
1. Tìm tất cả các số nguyên n để
a) \(2n^2+n-7\) chia hết cho n-2
b) \(n^2-2n+5\) chia hết chon n-1
2. Tìm các hằng số a;b sao cho
a) \(x^4+ax^2+b\) chia hết cho \(x^2-x+1\)
b) \(ax^3+bx^2+5x-50\) chia hết cho \(x^2+3x-10\)
tìm n thuộc z để
a,n^3-n chia hết cho n-2
b, n^3-3n^2-3n-1 chia hết cho n^2+n+1
Tìm số tự nhiên n để phép chia sau là phép chia hết
\(\left(8x^2y^3-6x^4y^2+\frac{1}{2}x^3y^3\right):2x^{n-1}y^n\)
Tìm n thuộc Z để:
a) (2n^2-n+2) chia hết cho (2n+1)
b) (2n^2+n-7) chia hết cho (n-2)
c) (10n^2-7n-5) chia hết cho (2n-3)
d) (2n^2+3n+3) chia hết cho (2n-1)
(2n^2+ 7n-2)chia hết cho (2n -1)
tìm n thuộc z để ( 2n ^2 +7n -2) chia hết cho (2n -1)
Tìm n€Z để 2n2+5n-1 chia hết cho 2n-1
Tìm n thuộc Z để 2n2-n+2 chia hết cho 2n+1
tìm n ϵ Z để 2n2 + 5n - 1 chia hết cho 2n - 1