Bài 3: Nhị thức Niu-tơn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
quangduy

Tìm số hạng không chứa x trong khai triển \(\left(x+\frac{1}{x}\right)^n\). Biết hệ số của số hạng thứ 3 hơn hệ số của số hạng thứ 2 là 35.

Nguyễn Việt Lâm
3 tháng 11 2019 lúc 1:48

\(\left(x+x^{-1}\right)^n=\sum\limits^n_{k=0}C_n^kx^k\left(x^{-1}\right)^{n-k}=\sum\limits^n_{k=0}C_n^kx^{2k-n}\)

Theo bài ra ta có: \(C_n^2-C_n^1=35\)

\(\Leftrightarrow\frac{n!}{2!\left(n-2\right)!}-\frac{n!}{\left(n-1\right)!}=35\)

\(\Leftrightarrow\frac{n\left(n-1\right)}{2}-n=35\)

\(\Leftrightarrow n^2-3n-70=0\Rightarrow n=10\)

Số hạng ko chứa x \(\Rightarrow2k-n=0\Rightarrow k=\frac{n}{2}=5\)

Số hạng đó là \(C_{10}^5\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Sonyeondan Bangtan
Xem chi tiết
Hàn Nhật Hạ
Xem chi tiết
Quách Minh Hương
Xem chi tiết
Mai Anh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
lu nguyễn
Xem chi tiết
lu nguyễn
Xem chi tiết
Bình Trần Thị
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết