Cmr với mọi x ∈ N thì \(D=\sqrt{x^2+\sqrt{4x^2+\sqrt{36x^2+10x+3}}}\notin Z\)
a) Cho x, y là các số thực thoả mãn điều kiện: \(\sqrt{x-1}-y\sqrt{x}=\sqrt{y-1}-x\sqrt{y}\)
Tìm giá trị nhỏ nhất của biểu thức \(S=x^2+3xy-2y^2-8y-5\).
b) Chứng minh rằng với mọi số tự nhiên x thì giá trị của biểu thức:
\(A=\sqrt{x^2+\sqrt{4x^2+\sqrt{36x^2+10x+3}}}\) không phải là một số nguyên.
Giai phuong trinh
a/ \(\sqrt{4x^2+4x+1}\) - \(\sqrt{25x^2+10x+1}\) = 0
b/ \(\sqrt{x^4-16x^2+64}=\sqrt{25x^2+10x+1}\)
c/ \(\sqrt{x^2-25}-\sqrt{x-5}=0\)
d/ \(\sqrt{4x^2-9}-2\sqrt{2x+3}=0\)
e/ \(\sqrt{x-2}-3\sqrt{x^2-4}=0\)
Tính GTBT:
a. \(-\sqrt{33}.3\sqrt{3}\)
b. \(\left(3\sqrt{5}\right).\left(-10\sqrt{3}\right)\)
c. \(\sqrt{36x-72}-3\sqrt{9x-18}+5\sqrt{4x-8}-\sqrt{x-2}\left(x\ge2\right)\)
Bài 1 : Tìm GTNN của biểu thức : \(A=\sqrt{5x^2+10x+9}+\sqrt{2x^2+4x+3}\)
Bài 2 : Tìm x biết :
a, \(\sqrt{x}< \sqrt{x+1}\)
b, \(\sqrt{x-1}>4\)
c, \(\sqrt{4x^2+4x+1}+\sqrt{2x-1}=0\)
Bài 3 Tìm x,y thuộc Z
a, \(x^2+4x-y=1\)
b, \(x^2-3xy+2y^2+6=0\)
a, Chứng minh rằng với mọi giá trị thực của x ta luôn có:
\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\) ≥5
b, Giải phương trình \(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}=3-4x-2x^2\)
Giải phương trình:
1, \(27\sqrt[3]{81x-8}=27x^3-54x^2+36x-54\)
2, \(x=2017-\sqrt{2017-\sqrt{x}}\)
3, \(4x^2-11x+6=\left(x-1\right)\sqrt{2x^2-6x+6}\)
Giải pt : a) \(8x^2-13x+7=\left(1+\frac{1}{x}\right)\sqrt[3]{3x^2-2}\)
b) \(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\)
c) \(2\sqrt{x+1}+6\sqrt{9-x^2}+6\sqrt{\left(x+1\right)\left(9-x^2\right)}=38+10x-2x^2-x^3\)
Giải PT và HPT
a) \(\sqrt{10x+1}+\sqrt{3x-5}=\sqrt{9x+4}+\sqrt{2x-2}\)
b) \(\left\{{}\begin{matrix}x^2-5y^2-8y=3\\\left(2x+4y-1\right)\sqrt{2x-y-1}=\left(4x-2y-3\right)\sqrt{x+2y}\end{matrix}\right.\)